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ITEM IDENTITIES AND THEIR RELATED OBSERVABLES

D. P. Gaver
P. A.Jacobs

Abstract

Each of J items has a characteristic Signature which varies in time. At
time 0, the value of a Signature and the identity of the corresponding item are
known. No further values of Signatures are observed until a later time t>0.
At time t, a Signature from an unknown item is observed. The problem is to
estimate the identity of the item whose Signature is observed at time t. The
estimation procedure studied is to estimate the identity of the unknown item
to be that one which maximizes the posterior probability of producing the
observed Signature.
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ITEM IDENTITIES AND THEIR RELATED OBSERVABLES

D. P. Gaver
P. A. Jacobs

1. The Problem

We are concerned with a diagnostic problem that may occur in many
applied areas, with medicine and mechanical system reliability furnishing
handy examples.

Suppose there are J Items (e.g., diseases or faults), each of which has a
characteristic Signature which varies in time; the Signature of Item i is

i=1,.2,..,
Yi(t) = 6; + Xj(t) t= 0,1,2,..1. (1.1

For the moment {Xj(t)} is an unspecified univariate stochastic process, but one
that loosely, has the property of staying near 0; in finite time, and for
convenience has some stationary or steady-state behavior. One could think of
Yi(t) as a physical index characteristic of a particular disease or disability, e.g.,
blood pressure, heart-beat pattern, mechanical vibration spectrum, etc.

Suppose that Yj(t) is only evident or observable occasionally at times
unrelated to the magnitude of Y;(t), but driven by other forces (this is a bit
implausible in some situations because a high blood pressure or temperature
may actually induce medical observation; the formulation can be changed to
reflect this later). Suppose that the Signature and the identity of an item are
both observed at time t=0. Suppose that later on, at time t, only the Signature
of an item is observed. The first question is: what is the probability that,
given the Signature value observed, its originating item is any particular one
of a list of candidates, e.g., i=13 out of a particular list j=1, 2, ... 13, ... ] = 39?




2. Question: Who is Being Observed?

Here we become quite specific, assuming for illustration that the
Signature of Item j is AR(1):

Yj(t) = 6; + Xj(1), 2.1)

where
Xj(t) = piXj(t-1) + gi(t), t=0,1,2,..,17,.. (2.2)
with {g(t)} ~IID N (0,0?). For the moment assume that the basic constants 6;,

. . . 2
j=1,2,.., ] are known, as are the correlations | pjl <1 and the variances Gj.

If | pjl < 1 then, given X;(0), Xj(t) is Normal/Gauss

2t
t 2 2 1-p,-
Xi(t) | X;0) ~ N| Xj(0)p;, o5 =0 | —5 (2.3)
) ) s A ) 10
—Pj
or, in terms of the actual observable Yj(t),
2
Y{(0 | Yj0) ~ N((Y;(0)-8)p; + 8}, &} (8) 2.4

Apparently if t runs on indefinitely, its distribution approaches
N(ej,oﬁ(m)) with 6}(e) = o’,-’/(l-p?} 25)

Scenario: Suppose there are potentially J items around, but admit the
possibility that each can vanish, so that there is some probability, which may
be less than one, that the item will actually be "around” at time t. Let the
probability that one, the jth, is present at t be Pj (t). Next, let sj(t) be the
probability that the jth be observable, e.g., is emitting sounds, given that it is
present; assume independence between items. All of this is preliminary, and
can (and should) be modified as required. Now consider that event

A) Item i has been observed at t=0, and its Signature is observed/noted to
be Y;(0) = y(0).




If it has been a long time since an observation was made then it is
piausible to take the probability of the above event as

0-6;) 1
P(Yi(0) e(dy(0)), O) = i} = pi(0) si(0)g (Yéi()w)‘ )Gi(w) dy©®  @6)

¢ being the N(0,1) density; that is, we observe Item i after his Signature is in
statistical equilibrium, and measure time from that (such an) instant.

Time t elapses and then for any j (either the same as i, or different)
B) Item j is observed at time t>0, with Signature value Yj(t) = y(t).

Since the AR(1) process is Markov, we can write down the joint
probability

P{Y;i(0) &(dy(0)), I(0) = i, Yj(t) &(dy (1), It) = j} =

y(0)-6;) dy(0) y(t) — mi(t)\dy(t)
oi(=) ) gi(=) PV 8 ® ‘P( o )o;(t)

pi(0) si(0) (2.7)

where we can think of pj(t) as the conditional probability that j is actually
eligible for observation, and sj(t) as the conditional probability of being
observable. Note that it is natural for jzi that

m;(t) = ; (2.8,)
o{(8) = oj(ee) = 0] / (1—p?) 28)b)

for at t it is still a "long time" since j(#i) was last observed; whereas if j=i, the
same item that was observed and identified at t=0, then

m;i(t) = 6; + (y(0)-8;) p; 29,2)
and
2
) " 1-{p;
o t) = o] 3 . (2.9,b)
1-p;

It follows that




C) the conditional probability of observing a particular item and
observing it with Signature value y(t) given the initial condition C;(0) =
{Yi(0),1(0)} is just

P{Y;(t) e(dy(®), Kb = j| C(0) = (y(0), 1(OD} =

(t) - mi(t)) dy(t) 2.10)

Y
p,(t) Sj(t) ¢ ( Gj(t) O'j(t)
where the appropriate mj(t) and oj (t) come from (2.8) or (2.9). In words, (2.10)
provides the probability of seeing or positively identifying a particular item, j,
and simultaneously measuring its current Signature value, given such a
complete observation at t=0.

Next

)
D) P{Y(®) e@y»| GO} = ZP{Y;(t)e(dy(t)), 10 = jl C(0)
g

y(t) - mi(t)) dy(t) @.11)

]
= ig,pj(t)sj(t) ¢ ( aj(t) oj(t)’

This is the probability that one measures a Signature at t, but cannot make a
complete identification.

From (2.10) and (2.11) we can calculate the probability of the identity of the
item whose signature is measured at time t, given the last complete
observation:

y(t)-mi(t)) 1
Pi(t) 5i(t) <P( SO8 )'oj(t)
(t)—mk(t)) 1

E) P{(®) =j] Y(t) = y(1), Ci(0)) =5 (2.12)

Z;Pk(t) sk(t) <P(y

ox(t) " ok(t)

If one looks hard at (2.12) it seems clear that when p;>0 and y(t) is near
y(0), and j=i, the above probability becomes closer and closer to unity as t
decreases, while if j#i that probability (that Item j#i) correspond-
ingly decreases.




3. The Probability of Making the Wrong Decision

In this section we study properties of making a decision based on
choosing the item which maximizes the posterior probability of a particular
item being the one whose Signature is observed at time t given the last
complete observation at time 0. For simplicity we will assume that there are
two items whose parameters are 61 and 0>.

3.1 _The parameters 6; and 62 are known.

Suppose the parameters 01 and 07 are known and | pjl <1. The condi-
tional distribution of Y(t) given Y(0) = y(0), I(0) = 1, I(t) = 1 is normal with
mean

m1(t) = 81 + (y(0)-61)p | (3.1)

and standard deviation

2
61(0) = o1(00) \[ 1-pT (3.2)
Further,

Y(t)-mp(t) Y(t)~mj(t) + (my(t)-my(t))
oty oo (t)

(3.3)

_Gl(t) Y(t)-mi(t)  mq(t)-mpa(t)
=o® o1 T o

where mj(t) and m;(t) are given by (2.8).

Assume that item j will be identified with the Signature at time t if it
maximizes (2.12); then,

P {wrong item is identified | 1(0) = 1, I(t) = 1, Y(0) = y(0)} (3.4)

r 2 A
1 (Y(t)-ma(t))

1
(B)so(t) ——— ex —_—
p2tts2 V27 05(t) Pl ™2 oo(t)

=P 2] 10=110=1, Y(O)=y(0 >
05100 1 1 (Y()-m1(D)
| PR aren TP T2 )




_ [p2t)salt) o1(t) 1 1
=F {mmsm) oa(t) ~ P {‘z 22 +5 (02 + d<t>)2}} (3.5)

where Z has a standard normal distribution
ci(t) 2t G1(e0)
o) = 50 = \jl-pl 02()

ot
my(t) - mo(t) (y(0)>-61)pq + (61 - 62)
O G2(<)

and

d@) =

p { wrong dedision| 10) = 1, 1t9=1, Y(0) = y(0)}

2t
papsa) N 1P 91()

p1(tsi(t) 02(=)

=P {—2 In

_ 272 2 pAbsAt) , 2 01()
=P { 0 < (1-c()))Z4 - 2c(Hd(Z - d(t)* + 2 In [_—m(t)sl(t) 19, prerny (3.6)

Note that as t—0 lx\[l-p%t]—)—oo and thus

> exp[—li [1—<t)?)22 - 2c()d(HZ - d(1)2 ]}

2t
pa®sa() N 1 P1 G1(c=)

pi(t)s1(t) 62(0)

} < (1-¢(t)2)Z2 - 2c(t)d(t)Z - d(t)z}

P{wrong decision| 1(0) = 1,1(t) = 1, Y(0) = y} - 0.

Example: Supposeci=0 i=12, |pil =lpl<1,i=1,2 and p1(t)s1(t) = pa(t)sa(t);
then

P{wrong decision| 1(0) = 1, I(t) = 1, Y(0) = y(0)}

=P {0 < (1-c(t)Z2 - 2c(t)d()Z - d(1)2 + 2 In () } (3.7)




with

clt) = V1-p2t (3.8,a)
(y(0) - 81)p' + (81-92)
d d(t) = . 38b
As t—oo, d(t)—)ie—]ﬁ* c(t)-1 and

o/\N1-p2

P{wrong decision | 1(0) = 1, I(t) = 1, Y(0) = y(0)}

N [1-¢('d(2°°) ! )] (3.9)

where @ is the standard normal distribution function. In this case, the
conditional probability of making a wrong decision decreases as |6;-82|
increases and the probability increases as ¢ increases.

For arbitrary t > 0 such that c#1,

P{wrong decision| I(0) = 1, i) = 1, Y(0) = y(0)}

")

(Z_c(t) d(t) N d()2 _2In c(t)}

by

_P{ 7 c(t) d(t) >\/ d(t)2 2In c(t)}
1—(t)? (l—c(t%z 1—c(t)2

1
c(t) d(t) \/d(t)z In(1-p2t)
-1 07| > pit T pt
=1-® (V1-pZ p-2td(t) + k() + ® (V1-pZt p-2td(t) - k(1)) (3.10a)
1
2
where k(t) = [d(t)2 p~4t - p-2t|n (l—pzt)] :

Note that as t—0, c(t)>0 and the conditional probability of an incorrect
decision tends to zero.




A numerically more stable form of (3.10a) is the following.
P{wrong decision | 1(0)=1, I(t)=1,Y(0)=y(0)} = 1-D(A1)+®(A;}  (3.10b)

where

Ay = [d®? + 2In c®)] [c(vd(® - VaD2- -c0D2in v ]~

Az =[-d(H? + 2In ¢(v)] [C(t)d(t) +d(1)2 = (1-c(t)2)2In c(t)] :

The unconditional probability of a wrong classification can be found by
taking the expected value of (3.10b) with respect to the normal random
variable Y(0) with mean b; and standard deviation o(e). The evaluation of
the integrals is performed numerically using Gauss-Hermite quadration with
59 points; cf. A. H. Stroud et al {1966} and Naylor and Smith [1982]. Figures 1
and 2 show the unconditional probability of wrong classification at time 1, 2,
..., 100 for parameter values 81 =1, 8, =2, 6 = 1 and values of p =0, 0.5, 0.8, 0.90,
0.95. (resp. curves A, B, C, D, E).

Figure 1 shows the probability of wrong classification. As noted above,
the probability of wrong classification is small for small values of t and then
increases to a limiting value. For very small times Laving a larger p results
in smaller probabilities of error. It is seen from (3.9) that the limiting value is

a function of o(e) = ol\J 1-p2 . Hence the larger p is the larger the limiting
probability of wrong classification. Thus, while for very small times, having a
large positive p decreases the probability of wrong classification, at larger time
it increases the probatility of wrong classification.

In Figure 2, each probability of wrong classification is divided by its
asymptotic value. These normalized probabilities are between 0 and 1. The
fraction (relative to the limiting probability) of the probability of wrong
classification for each time t is monotone in p. For a fixed time t, for a high p,
the fraction of the probability of wrong classification is less than or equal to
that for a lower p. The higher p is, the longer it takes for the probability of
error to reach its asymptotic value.

3.2. The parameters 87 and 6; have noninformative priors.

In this subsection we will assume that 61 and 62 have noninformative
prior distributions. Thus, assuming | pil <1,
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P {Y(0) edy(0), 6ede| 1(0) = 1}
1 1
exp {-5 (y(0) - 6)/o1(e=)” } dy(0)de .

V27 61(=)
Hence, formally for a non-informative improper prior,
P {Y(0)edy(0) | 1(0) = 1} = 1-dy(0)
and thus
P {8ede | 1(0) = 1, Y(0) = y(0)}

1

~ 27 01(ce)

Further,

1
exp {—f (O-y(O))z/ (51(°°)2 } de.

P {Y(Dedy(®), 0ed8| 10)=1, I()=1, Y(0)=y(0)}

1
~ 21:101«) &P {‘i (Y(t) - 6-p1 (y(0) - e))z/o,(t)z}
1 1 \ )
X J2r o) P {-5 (6 - y(©)) /or(=) }
- 1 2 2 1
S 2moiOVZrowe) T {‘2 (CETIG) WARIGIES

where the usual calculations yield

t -1 [ t] -1

\% (t)2 +
1) = N
o) oyfe) (1-&‘)01(«»)2
1-p;
£ P11
= (0 -6 50) g+ yO o’
vi(t)

11

R

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)




2
R = ——T—T"‘(t) [y - y(0)]2 = [y(t)—y(O)]2/2 [1—pt1] m(eo)2 (3.17)
o1(=0) o1(t)
1) =62/ (1-p‘§) (3.18)
1)’ = (1-011") o1(=)” (3.19)
Hence,

P {Y(®edy® | 10) =1, 1) = 1, Y(0) = y(0)}

1
V2n \/ 2[l-pt1 ]cn(w)2

Similarly

1
exp {—5 (y(®) - y(0))2/ 2 [l-pi] 01(“)2} (3:20,2)

P{Y(®edy(t),8ed6 | (t)=2, [0)=1, Y(0)=y(0)}

1 1
oo expl-3 (y(0-0)"/02(=)” }dy(Dde

and

P {Y(Wedy(®) | (H)=2, (0)=1, Y(0)=y(0)} = 1-dy(t) (3.20,b)
where 6(0) = 62/ (l-—pzz).

Suppose item j is estimated to be the one observed at time t if it
maximizes

P {I(t)=i. 10)=1, Y(0) = y(0), Y(t)=y(t)} .
It follows that

P {Item 2 is chosen | 1(0)=1, Y(0)=y(0), I(t)=1}

12




1 1
=P {pz(t)sz(t) > p1(t)si(t) m exp{—i (Y(t)—y(O))z/ al(t)z} | 100)=1, 1(H)=1, Y(O):y(O)}
1

(t)sa(t) 1.2
- P{\] 21 01() % A ’ 2(1—p§) > exp{—EZ }}
=—_ 01 p2t)s2(t) t 2
1-p,

where Z is a standard normal random variable and oy(t) = (l-ptl) o1(e2).

Note that as t—0, the probability of choosing the wrong object tends to 0.
If

k(o) =y 2 —2L RS 2(1-p‘1) >1 (3.22)

—p1(D510
\’ 1-py

then the conditional probability of making the wrong decision is 1.

If k(t) < 1 then

P {Item 2 is chosen | 1(0)=1, Y(0)=y(0), I(t)=l}

=2 [1-0(-2 In(k(1)))] (3.23)

where @ is the standard normal cdf. Note that (3.23) is independent of y(0).
As o1 increases, the conditional probability of making the wrong decision
increases. Similarly as t increases the probability of making the wrong
decision increases. As pi(t)s1(t) decreases, the probability of making the wrong
decision also increases.

In the case in which p(t) 51(t) = pa(t) sx(t), p1 = p2=p>0,and 61 =02 =0

1
2

k() = 297 - [}—:g%] .

13




For t = 1, k(t) and hence the probability of error decreases as p increases. For
t =2, k(t) = V2r o for all values of p and so the probability of choosing the
wrong item increases as a function of t. The limiting value of k(t) as t— e

once again depends on o(e) = o/\ 1-p2 . Hence as p increases the limiting
probability as t—ee of choosing the wrong item increases. Figure 3 displays the
probability of choosing the wrong item for 6 = 0.1 and p = 0, 0.5, 0.8, 0.9, 0.95
(resp. curves A, B, C, D, E). Note that for t>2, it is p = 0 that has the smallest
probability of incorrect identification. These results depend on the specific
prior (3.20,b). In the next subsection we will consider Gaussian priors.

3.3 The parameters 0; and 62 have Gaussian priors

In this section we will assume 6; has a normal prior with mean p; and

variance T% i =12 Thus, assuming | p;l <1,

P {Y(0)edy(0), 6ed0| 1(0)=1}

2 2
1 1 1 (y(0)-6) 1 (8-i1)
_ exp |—= - dy(0)de (3.24)
vV 21 o1(=) vV 21 1 P72 <r1(<>°)2 2 ﬁ ¢

2
1 1 0 1
=\/—21—t—1 o1(=) V27 1 exp{-i &fn(l—o(,z)i -3 Rl“”} dy(0)d6 (3.25)
1

where straightforward calculations yield

. ol(oo)2+ ‘t%
-2
vi0) == + = (3.26)
121 o1 (m)7 ﬁ cn(w)2
m1(0) = [(y(O)/ ol(oo)z) + (m / 121)] v1(0)2
2 y(0) + 01 (=) 1
= (3.27)

2 2
1 (°°) + 14

14
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1 2
RiO) =—75—7 (y(0)-pp .
o1(e) +1
with
9| =) = f/(l-lej

Therefore,

P {6ed6 | 10)=1, Y(0)=y(0)} =

1 1 (0—m1(0))2
————expl-5——75—[.
v 2% v1(0) P12 v1(0)

Similarly, from (2.4)

P{Y(bedy(t), 6ed6 | 1(0)=1, I(H)=1, Y(0)=y(0)}

) \/—ZTI a0 P {_% (y(t) -6 - Pi(y(o)-e))z/ 01(t)2}

1 1 2 2
* 2z vi0) expl-y @-m©0)'/v10 ay(ae

2
1 1 { 1 (9—a1(t)) 1

= -3 -5 Ri(t) [ dy(t)d6
V2r 61(t) V21 v1(0) P12 0 3 Ral )} y(t)

where

£ = [[(1-;;'1)2/01«)2] . v,(o)‘z]

(1-p)y®-ptyO)] m1<0)]
+

2
ai(t) = &1(t) — 3
! 2 { o1 (t)2 v1(0)

and

16

(3.28)

(3.29)

(3.31)

(3.32)

(3.33)

(3.30




2
Ryt) = [(y(t)-pﬁy(o»-m](oxl—pﬁ)}

i} [(y(t)—ptly(O))—m1(0)(1—pt1)]2/{(l—pt1)2v1(0)2+ o1 ]

with

and

2 2 2t 2
o) = o7 (I-p1)/(1-pp.

Thus,

Ex°
o1(t) v1(0)

P {Y(Vedy(®) | Y(0)=y(0), 1(0)=1, Kt)=1}

1
- P G0 /0’
1

where

) = [(1—p§>2v1<0)2 s out) ]

(1-po(e0) 4 12 2<1~p§)]

2
G1(e0) + 14

= (1-pY) o1 [1 . (rﬁ +p1 m(«»)z)/(r? + cn(«»z)}

11 = piy(0) + m1(0) (1-p})
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(3.34)

(3.35)

(3.36)

(3.37)




ptly (0)[01 (w)2 + t%J + [‘tzly 0) +oq (oo)zm ] (1- ptl)

2 2
o1 (2) + 11

2] [2
{121 y(0)+oy ) b1 }»pt‘[yw){m(w)z + Tl} - [le(O) + ol(oo)zu]D

2 2
o1(e0) +1,

2
T y(0) + o1(e0) i1 + ptxcn(m)2 [y(©0-p1]

2 2
o1(e0) +1q

2 2
pi61(=0) (1-p ﬁ) + y(O)[ﬁ + ptlm(oo) ]

2 2
01(°°) + T

Similarly,

2
1 1 (y®-u2(0)
P {Y(Dedy(H | Y(0)=y(0), [(0)=1, I()=2} T SPTT Lz | O
2

T2(t)
where
2 2
) = 0p(e) + 1T (3.39)
and
pa(t) = pa. (3.40)

Once again we will estimate the identity of the item that was observed at
time t to be that item j for which

(1) s; (t 1
(t,.)(f)“ exp{ -3 (y(0) - ) /50 (3.41)
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is the largest.

Thus,

P {choose item 2| Y(0)=y(0) , 1(0)=1, K(t)=1} (3.42)

t 1
- P{ i;)(st:;( ) exp { - (YO - OV }

palt 1
> 1,(;1)21)“) exp { - 5 (YO ®) 1)’ }l Y(0)=y(0), [0)=1, I(t)=l}

t)sa(t 1 1
-p{ PP exp{ Gz eawy’]> PO ol L) ey

where Z is a standard normal random variable.

t
ot =% (3.44)

o1(ee) \[ 1-p}

= T 1+ [(121 + Ptlol(w)z}/("%"' Gl(w)z)]]
—\/ 02(c0) + 13

NI

and

K1 (t)-pa(t)

d(t) = ,tz(t)

(3.45)

PL(y(0)1411) G1(600)° + (3(0) — 12) T 2 + (g-11) 03 (o)

1
2 2
—\/02(“)2'* Tg L o1(e=) +14

Hence

P {choose item 2| Y(0)=y(0) , 1(0)=1, IL(t)=1} (3.46)

= Pl in LR < 1) 27 2ct0dz - a0’}
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d@? p2(b)sy(t) — c(bd(t) jz
=P T—c()?2 -21n [c(t) p](t)s1(t)]< [\fl—c(t)2 Z- —“1—C(t)

ifl c(t) ] <1

If p1(t) s1(t) = 0, then item 2 will always be chosen. Assume pi(t) sitt) > 0.
If pa(t)s2(t)=0, then clearly item 2 will never be chosen. In what follows
assume
p1(t) s1(t) and pa(t) s2(t) are both positive. Note that as t—0, 11(t)—>0, c(t)—0
and

P {choose item 2 | Y(0)=y(0) , I(0)=1, I(t)=1}— 0.

Also, as 12— and/or 02(«)—e, c(t)—>0, d(t)—>0 and the conditional
probability of making a wrong decision tends to zero for t>0. Note that as
01(t) 3=, c(t)—eo, d(t)>=, and the conditional probability of making a wrong
decision tends to 1.

The unconditional probability of a wrong classification can be found by
taking the expected value of (3.46) with respect to Y(0). It follows from (3.25)
that Y(0) has a normal distribution with mean p; and variance 6 ()2 + 52
Figures 4 and 5 show the probability of misclassification for the case
paA s2(t) = p1t) sy(t), i =12=1,01=02=1, 43 =1, up =2 and p = 0.0,0.5, (.8,
0.9, 0.95 (resp. curves A, B, C, D, E). The integration to evaluate the probability
is performed using Gauss-Hermite quadration with 59 points; cf. A. H. Stroud
et al. [1066] and Naylor and Smith [1982]. Figure 4 shows the probability of
wrong classification. For small times t having a larger p results in smaller
probabilities of error. The probability of wrong classification is small for small
values of t and then increases to a limiting value as t—e. The limiting
probability of wrong classification increases as p increases. Thus, while for
small times, having a larger positive p decreases the probability of wrong
classification, at larger times it increases the probability of wrong
classification. In Figure 5, each probability of wrong classification is divided
by its asyinptotic (as t—oe) value. For a fixed time t, for a higher p, the fraction
of the probability of wrong classification is less than or equal to that for a
lower p. The higher p is, the longer it takes for the probability of error to
reach its asymptotic value.
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4. Conclusions

This paper considers a model in which there are J items each of which has
a characteristic Signature which varies in time. In the examples studied the
Signature process of each item is an AR(1)-type process independent of the
other items. At time 0 the value of a Signature and the identity of the
corresponding item are known. No further values of Signatures are observed
until a later time t. At time t > 0, a Signature from an unknown item is
measured. The problem is to estimate the identity of the item observed at
time t. The estimation procedure studied is to estimate the identity of the
unknown item to be that one which maximizes the posterior probability of
producing the observed signature. The probability of correct identification
depends on the parameters of the processes and the magnitude of t. The
smaller t is the greater the probability of correct identification of the unknown
item. For fixed time t a higher positive correlation results in a lower fraction
of the probability of wrong classification with respect to its limiting (as t—eo)
value.

It appears that the problem of this paper resembles the "missing-data

problem"” of statistics; see Little and Rubin (1987). We plan to investigate the
connection more extensively in future work.
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